RTH26008R

Product Features

- GaN on SiC Chip on Board
- Surface Mount Hybrid Type
- Asymmetric Doherty Amplifier
- High Efficiency
- No Matching circuit needed

Applications

- 5G/ LTE system
- Small cell
- RRH
- RF Sub-Systems
- Base Station

Package Type : SP-5CL

Description

Accommodating the future of 5G/LTE small cells, RFHIC introduces RTH26008R amplifier fabricated using an advanced high power density Gallium Nitride (GaN) semiconductor process.

Electrical Specifications @ Vds =31V, Ta=25 °C

PARAMETER	UNIT	MIN	TYP	MAX	CONDITION
Frequency Range	MHz	2620	-	2690	ZS = ZL = 50 ohm
Power Gain		27	29	-	
Gain Flatness	dB	-2	-	+2	Drive+Carrier Idq = 180mA
Input Return Loss		-8	-10	_	Vgp = -4.5V
Pout @ Average	dBm	-	39		
Pout @ Psat	dBm	46.5	-	-	Pulse Width=20us, Duty10%
ACLR @ LTE 1FA		-	-30	-	Non DPD
BW 20MHz(PAPR 7.5dB) C.F ± 18.015MHz	dBc	-50	-		With DPD
Drain Efficiency	%	-	45	-	
Drive Idq			30	-	D 4 @ A
Carrier Idq	mA	W - L I	150	con	Pout @ Average
Total Ids	**		570		
		-	-3.0	-2.0	Vgd/Vgc
Supply Voltage	V	-	-4.5	-4.0	Vgp
		30.8	31	-	Vds

Caution

The drain voltage must be supplied to the device after the gate voltage is supplied

Turn on → Turn on the Gate voltage supply and last turn on the Drain voltage supplies

Turn off → Turn off the Drain voltage and last turn off the Gate voltage

Note

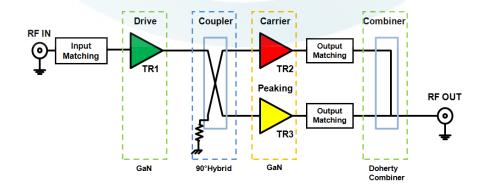
1. ACLR Measured Pout=39dBm @ fc± 20MHz / 18.015MHz LTE 20MHz 1FA PAPR=7.5dB @ 0.01% probability on CCDF

RTH26008R

Mechanical Specifications

PARAMETER	UNIT	ТҮР	REMARK
Mass	g	5.0	±1.0
Dimension	mm	26.5 x 18 x 4.2	±0.15

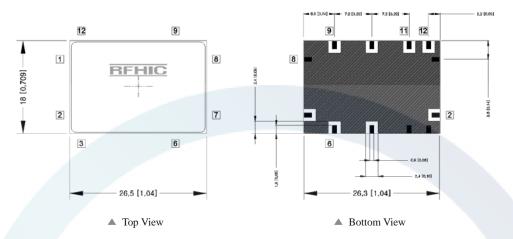
Absolute Maximum Ratings


PARAMETER	UNIT	RATING	SYMBOL
			Vgd
Gate-Source Voltage	V	-8 ~ -2	Vgc
			Vgp
Drain-Source Voltage	V	50	Vds
		1.2	Drive
Gate Current	mA	3.6	Carrier
		7.2	Peaking
Operating Junction Temperature	°C	225	TJ
Operating Case Temperature	°C	-30 ~ 100	$T_{\rm C}$
Storage Temperature	°C	-40 ~ 100	T_{STG}

Operating Voltages

PARAMETER	UNIT	MIN	ТҮР	MAX	SYMBOL
Drain Voltage	V	30.8	31	-	Vds
Gate Voltage (on-stage)	V	-	Vgd @Drive Idq	-2	Vgd
Gate Voltage (on-stage)	V		Vgc @Carrier Idq	-2	Vgc
Gate Voltage (on-stage)	V	rFn	Vgp*1	-2	Vgp
Gate Voltage (off-stage)	V	-	-8	-	Vgd
Gate Voltage (off-stage)	V	-	-8	-	Vgc
Gate Voltage (off-stage)	V	-	-8	-	Vgp

^{1.} Vgp(Pin#5) set: Lower Vgp of Δ -1.6V at Peaking Idq 100mA \pm 5%


Block Diagram

Package Dimensions (Type: SP-5CL)

* Unit: mm[inch] | Tolerance: $\pm 0.15[.006]$

Pin Description								
Pin No	Function	Pin No	Function	Pin No	Function	Pin No	Function	
1	GND	3	GND	7	RF Out	9	Vds	
2	RF In	4	GND	8	GND	10	Vgc	
		5	Vgp			11	Vds	
		6	Vds			12	Vgd	

* Mounting Configuration Notes

- 1. For the proper performance of the device, Ground / Thermal via holes must be designed to remove heat.
- 2. To properly use heatsink, ensure the ground/thermal via hole region to contact the heatsink. We recommend the mounting screws be added near the heatsink to mount the board
- 3. In designing the necessary RF trace, width will depend upon the PCB material and construction.
- 4. Use 1 oz. Copper minimum thickness for the heatsink.
- 5. Do not put solder mask on the backside of the PCB in the region where the board contacts the heatsink
- 6. We recommend adding as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
- 7. We recommend that the PCB with the RF device in a hybrid package(RTH Series) is not washed to remove the flux.

Revision History

Part Number	Release Date	Version	Modification	Data Sheet Status
RTH26008R	2018.09.12	0.1	Newly Created	Preliminary

RFHIC Corporation reserves the right to make changes to any products herein or to discontinue any product at any time without notice. While product specifications have been thoroughly examined for reliability, RFHIC Corporation strongly recommends buyers to verify that the information they are using is accurate before ordering. RFHIC Corporation does not assume any liability for the suitability of its products for any particular purpose, and disclaims any and all liability, including without limitation consequential or incidental damages. RFHIC products are not intended for use in life support equipment or application where malfunction of the product can be expected to result in personal injury or death. Buyer uses or sells such products for any such unintended or unauthorized application, buyer shall indemnify, protect and hold RFHIC Corporation and its directors, officers, stockholders, employees, representatives and distributors harmless against any and all claims arising out of such unauthorized use.

Sales, inquiries and support should be directed to the local authorized geographic distributor for RFHIC Corporation. For customers in the US, please contact the US Sales Team at 919-677-8780. For all other inquiries, please contact the International Sales Team at 82-31-8069-3036.