Preliminary GaN Doherty Hybrid Amplifier RPAM35016-25

Product Features

- TD-LTE band 3400~3600MHz
- Power gain 27dB, Psat 100W
- Main Doherty amp. efficiency 45% @ Pavg=16W
- Input/Output Impedance 50ohm
- 2-Stage Doherty Amplifier
- · GaN on SiC Technology
- Copper clad laminates board
- 13x17x2.2mm size SMD package

Description

The RPAM35016-25 is a fully integrated micro-strip Doherty GaN Hybrid power amplifier module designed for applications in 5G Massive MIMO systems, small cells, and low power remote radio heads. RPAM Series is an integrated 2-stage power amplifier module, 50ohm input and output impedance matched device can deliver up to 100W of saturation power and operating drain voltage 48V. This device is size 13x17x2.2mm and is packaged in a plastic surface mount package.

Applications

Massive MIMO

• Small cell

• 4G/5G LTE Technology

• TDD or FDD- LTE system

AAS(Active Antenna System)

PARAMETER	UNIT	MIN	ТҮР	MAX	CONDITION
Frequency Range	MHz	3400	3500	3600	ZS = ZL = 50 ohm
Power Gain		-	27		
Gain Flatness	dB	-1.5	-	+1.5	-
Input Return Loss		-	-12	-	
Pout @ Average	dBm	-	42		16W
Pout @ Saturation	dBm	-	50		Pulse Width=20us, Duty cycle 10%
ACLR @ BW 20MHz 1FA	ID	-	-28	-25	Non DPD
LTE (PAPR 7.5dB)	aBc		-54	com	With DPD
Drain Efficiency	%	V. I I	45	COILI	16W
Supply Voltage	V	-4.9	-2.8	-2.0	Vgd
		-4.9	-2.8	-2.0	Vgc
		-4.9	-4.8	-3.0	Vgp
		-	48	-	Vds

Electrical Specifications @ Vds=48V, Ta=25 °C

Caution

The drain voltage must be supplied to the device after the gate voltage is supplied

Turn on → Turn on the Gate voltage supply and last turn on the Drain voltage supplies

Turn off → Turn off the Drain voltage and last turn off the Gate voltage

Note

1. ACLR Measured Pout=42dBm @ fc± 20MHz / 18.03MHz

LTE 20MHz 1FA PAPR=7.5dB @ 0.01% probability on CCDF

Mechanical Specifications

PARAMETER	UNIT	TYPICAL	RATING
Mass	g	4.0	-
Dimension	mm	13 x 17 x 2.2	±0.15

1 / 5

All specifications may change without notice Version 0.1

RFH

Package Type : PP-1S

Preliminary GaN Doherty Hybrid Amplifier

RFHIC

Absolute Maximum Ratings

PARAMETER	UNIT	RATING	SYMBOL	CONDITION
Gate-Source Voltage	V	-10 ~ 0	Vgd Vgc Vgp	Tc=25°C
Drain-Source Voltage	V	100	Vds	Tc=25°C
Gate Current	mA	1.2 3.6 7.2	Drive Carrier Peaking	Tc=25°C
Power Dissipation	W	45	PD	Tc=85°C
Operating Junction Temperature	°C	225	TJ	-
Operating Case Temperature	°C	-30 ~ 85	Tc	-
Storage Temperature	°C	$-40 \sim 100$	T _{STG}	-
Soldering Temperature ^{*1}	°C	260	Ts	30s Max.
RF Input Level (Pulse)	dBm	33	Pin	Tc=25°C

*1 Reflow cycle limit : 1 time

Operating Voltages & Input level

PARAMETER	UNIT	MIN	ТҮР	MAX	SYMB <mark>OL</mark>
Drain Voltage	V	47.5	48	48.5	Vds
Gate Voltage (on-state)	V	-4.9	Vgd*2	-2.0	Vgd
Gate Voltage (on-state)	V	-4.9	Vgc*3	-2.0	Vgc
Gate Voltage (on-state)	V	-4.9	Vgp ^{*4}	-3.0	Vgp
Gate Voltage (off-state)	V	rth	-8	m - /	Vgd
Gate Voltage (off-state)	V		-8		Vgc
Gate Voltage (off-state)	V	-	-8	-	Vgp
RF Input Level (Pulse)	dBm	-	-	30	Pin

*2 Vgd(Pin#28) set : Drive amp. Idq 30mA

*3 Vgc(Pin#25) set: Carrier Idq 100mA±5%

*4 Vgp(Pin#8) set: Lower Vgp of ∆-1.9V at Peaking Idq 10mA

ESD Level

PARAMETER	STANDARD	RESULT	
HBM	JESD22-A114E	Class 1A/ passed Voltage 500V	
MM	JESD22-A115C	Class A/ passed Voltage 100V	

Block Diagram

Application Circuit

Bill of Material (Evaluation board)

LOCATION	Part Number	Value	Manufacturer
C3, C4, C6	1812B225K101CT	2.2uF / 100V	WALSIN
C1, C2, C5	GRM1885C1H101JA01D	100pF / 50V	MURATA
РСВ	RO4350B	2Layer, 20mil, 1oz	ROGERS

RF

Package Dimensions (Type: PP-1R)

Pin Description							
Pin No	Function	Pin No	Function	Pin No	Function	Pin No	Function
6	RF In	10	Vds	24	Vds	27	Vds
8	Vgp	17	RF Out	25	Vgc	28	Vgd
			All other p	ins Ground			

Recommended Pattern

* Mounting Configuration Notes

- 1. For the proper performance of the device, Ground / Thermal via holes must be designed to remove heat.
- 2. To properly use heatsink, ensure the ground/thermal via hole region to contact the heatsink. We recommend the mounting screws be added near the heatsink to mount the board
- 3. In designing the necessary RF trace, width will depend upon the PCB material and construction.
- 4. Use 1 oz. Copper minimum thickness for the heatsink.
- 5. Do not put solder mask on the backside of the PCB in the region where the board contacts the heatsink
- 6. We recommend adding as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
- 7. We recommend that the PCB with the RF device in a hybrid package is not washed to remove the flux.

Ordering Information

Part Number	Package Design	
	-R (Reel)	
RPAM35016-25	-B (Bulk)	
	-EVB (Evaluation Board)	

Revision History

Part Number	Release Date	Version	Modification	Data Sheet Status
RPAM35016-25	2019.04.09	0.1	Initial release	Preliminary
				-
				-

RFHIC Corporation reserves the right to make changes to any products herein or to discontinue any product at any time without notice. While product specifications have been thoroughly examined for reliability, RFHIC Corporation strongly recommends buyers to verify that the information they are using is accurate before ordering. RFHIC Corporation does not assume any liability for the suitability of its products for any particular purpose, and disclaims any and all liability, including without limitation consequential or incidental damages. RFHIC products are not intended for use in life support equipment or application where malfunction of the product can be expected to result in personal injury or death. Buyer uses or sells such products for any such unintended or unauthorized application, buyer shall indemnify, protect and hold RFHIC Corporation and its directors, officers, stockholders, employees, representatives and distributors harmless against any and all claims arising out of such unauthorized use. Sales, inquiries and support should be directed to the local authorized geographic distributor for RFHIC Corporation. For customers in the US, please contact the US Sales Team at +1-919-677-8780. For all other inquiries, please contact the International Sales Team at 82-31-8069-3036 or Korean Domestic Sales Team 82-31-8069-3034.