

Product Features

- GaN on SiC Chip on Board
- Surface Mount Hybrid Type
- Asymmetric Doherty Amplifier
- High Efficiency
- No Matching circuit needed

Applications

- RF Sub-Systems
- Base Station
- RRH
- 4G/ LTE system
- Small cell

Package Type : SP-2C

Description

Accommodating the future of 4G/LTE small cells, RFHIC introduces RTH18008S-30 amplifier fabricated using an advanced high power density Gallium Nitride (GaN) semiconductor process. This high performance amplifier achieves high efficiency of 45%, and powers 8W over the frequency range from 1805MHz to 1880MHz. Integrated with Asymmetrical Doherty configurations, RTH Series is packaged in a very small form-factor 32 x 20 x 5.6mm on AIN (aluminum nitride) board which provides excellent thermal dissipation.

Electrical Specifications @ Vds =31V, Ta=25 °C

PARAMETER	UNIT	MIN	TYP	MAX	CONDITION
Frequency Range	MHz	1805	-	1880	ZS = ZL = 50 ohm
Power Gain		29.5	31.5	-	
Gain Flatness	dB	-2	-	+2	Drive+Carrier Idq = 270mA
Input Return Loss		-6	-10	-	Vgp = -4.5V
Pout @ Average	dBm	-	39		
Pout @ Psat	dBm	46.5			Pulse Width=20us, Duty10%
ACLR @ LTE 1FA	15	-	-29	-	Non DPD
$BW 20MHz(PAPR 7.5dB)$ $C.F \pm 18.015MHz$	dBc	4	-56	còn	With DPD
2nd Harmonic	N'A	WII	-27	. CUII	@Pout = 39dBm
3rd Harmonic	dBc	-	-35	-	(LTE 20MHz 1FA PAPR=7.5dB)
Drain Efficiency	%	40	45	-	
Drive Idq		-	50	-	Dt @ A
Carrier Idq	mA	-	220	-	Pout @ Average
Total Ids		-	570	640	
		-	-3.0	-2.0	Vgd/Vgc
Supply Voltage	V	-	-4.5	-4.0	Vgp*
		30.8	31	-	Vds

Caution

The drain voltage must be supplied to the device after the gate voltage is supplied

Turn on: Turn on the Gate voltage supply and last turn on the Drain voltage supplies

Turn off: Turn off the Drain voltage and last turn off the Gate voltage

Note

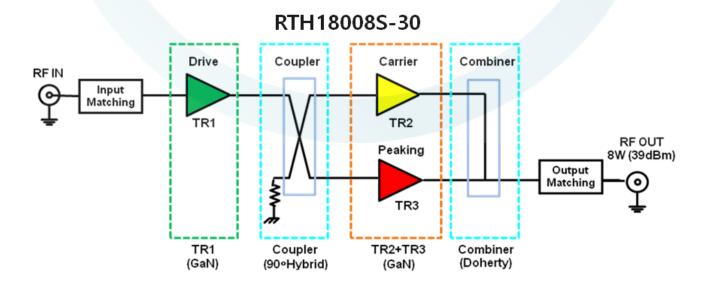
1. ACLR Measured Pout=39dBm @ fc± 20MHz / 18.015MHz

LTE 20MHz 1FA PAPR=7.5dB @ 0.01% probability on CCDF, (DPD Engine: Xilinx DPD)

2. Vgp: Adjust Vgp lower(\triangle -1.6V) @Peaking Amp. Idq=100mA \pm 5%

Mechanical Specifications

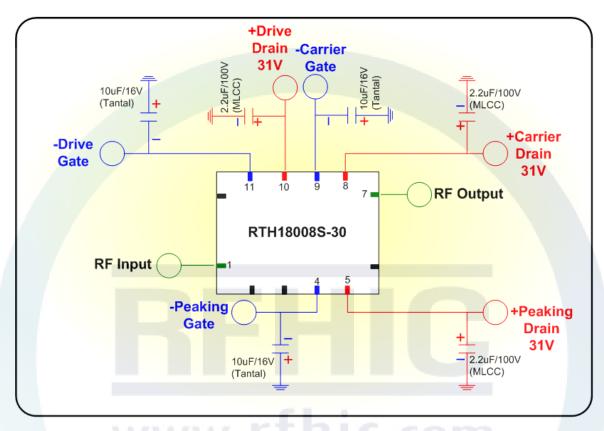
PARAMETER	UNIT	ТҮР	REMARK
Mass	g	7	-
Dimension	mm	32 x 20 x 5.6	-


Absolute Maximum Ratings

PARAMETER	UNIT	RATING	SYMBOL
			Vgd
Gate-Source Voltage	V	-8 ~ -2	Vgc
			Vgp
Drain-Source Voltage	V	50	Vds
Gate Current	mA	12	Igs
Operating Junction Temperature	°C	225	TJ
Operating Case Temperature	°C	-30 ~ 100	$T_{\rm C}$
Storage Temperature	°C	-40 ~ 100	T _{STG}

Operating Voltages

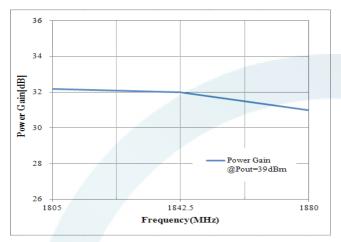
PARAMETER	UNIT	MIN	ТҮР	MAX	SYMBOL
Drain Voltage	V	30.8	31	-	Vds
Gate Voltage (on-stage)	V	-	Vgd @Drive Idq	-2	Vgd
Gate Voltage (on-stage)	V	-	Vgc @Carrier Idq	-2	Vgc
Gate Voltage (on-stage)	V		Vgp	-2	Vgp
Gate Voltage (off-stage)	V	rth	-8	ma -	Vgd
Gate Voltage (off-stage)	V		-8		Vgc
Gate Voltage (off-stage)	V	-	-8	-	Vgp

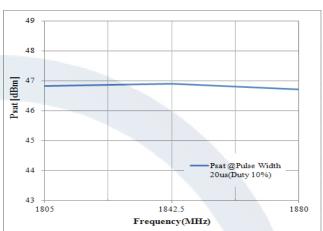

Block Diagram

 $Korean\ Facilities: 82-31-8069-3036\ /\ rfsales@rfhic.com$ $US\ Facility: 919-677-8780\ /\ sales@rfhicusa.com$

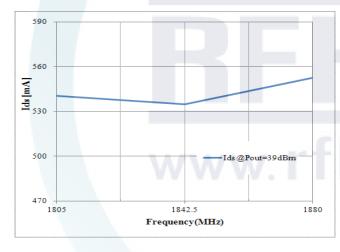
Application Circuit

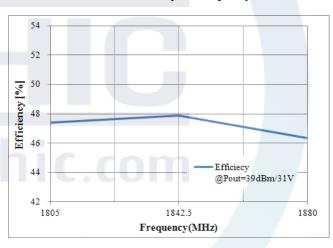
Part List

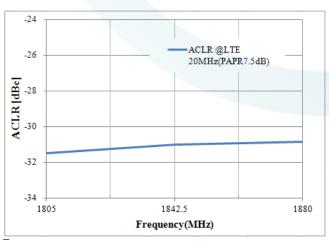

Location	Model No.	Spec.	Maker
Gate(4, 9, 11 Pin)	TAJA106K016RNJ	10uF / 16V	AVX
Drain(5, 8, 10 Pin)	GRM32ER72A225KA35_3225K	2.2uF / 100V	MURATA
Evaluation Board	RO4350B	2Layer, 30mil	ROGERS


Performance Charts

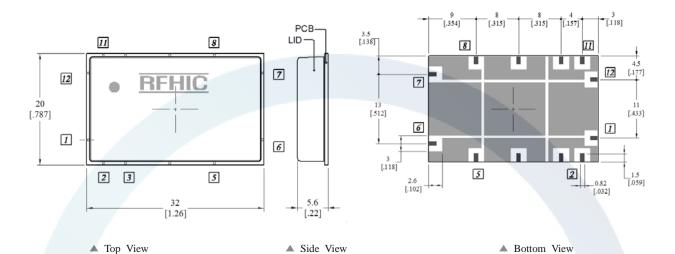
* Bias condition @ Idq= 270mA, Vgp= -4.5V, Ta=25 °C


Power Gain vs. Frequency

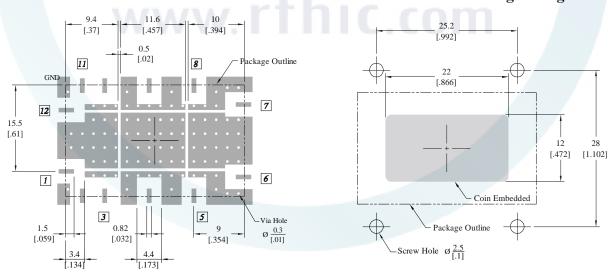

Psat vs. Frequency


Ids vs. Frequency

Drain Efficiency vs. Frequency


ACLR vs. Frequency

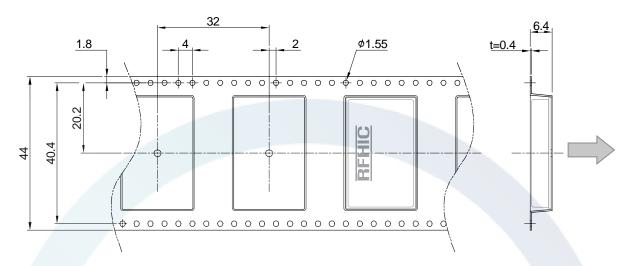
Package Dimensions (Type: SP-2C)


* Unit: mm[inch] | Tolerance ±0.15 [.006]

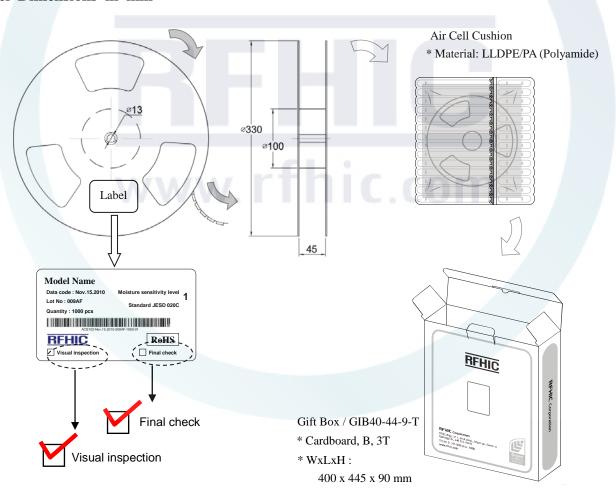
Pin Description								
Pin No Function Pin No Function Pin No Function Pin No Function								
1	RF Input	4	Vgp	7	RF Output	10	Vds	
2	NC/GND	5	Vds	8	Vds	11	Vgd	
3	NC/GND	6	NC/GND	9	Vgc	12	NC/GND	

Recommended Pattern

Recommended Mounting Configuration


Mounting Configuration Notes

- 1. Ground / thermal via holes are critical for the proper performance of this device.
- 2. Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
- 3. Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground / thermal via hole region contacts the heatsink.
- 4. Do not put solder mask on the backside of the PCB in the region where the board contacts the heatsink.
- 5. RF trace width depends upon the PCB material and construction.
- 6. Use 1 oz. Copper minimum.


US Facility: 919-677-8780 / sales@rfhicusa.com

Carrier Tape Dimensions in mm

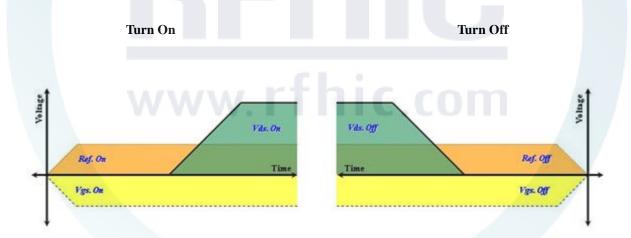
Reel Dimensions in mm

Precautions

This product is a Gallium Nitride Transistor.

The Gallium Nitride Transistor requires a Negative Voltage Bias which operates alongside a Positive Voltage Bias. These Biases are applied in accordance to the Sequence during Turn-On and Turn-Off.

The Pallet Amplifier does not have a built-in Bias Sequence Circuit. Therefore, users need to either apply positive voltages and negative voltages in the required sequence, or add an external Bias Circuit to this Amplifier.


The required sequence for power supply is as follows.

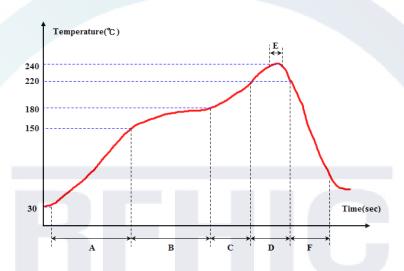
During Turn-On

- 1. Connect GND.
- 2. Apply Gate Voltage (Vgd and Vgc and Vgp)
- 3. Apply Drain Voltage (Vds)
- 4. Apply the RF Power.

During Turn-Off

- 1. Turn off RF power.
- 2. Turn off Drain Voltage (Vds), and then, turn off the Gate Voltage (Vgd and Vgc and Vgp)
- 3. Remove all connections.

- Sequence Timing Diagram -


Reflow Profile

* Reflow oven settings

Zone	A	В	С	D	E	F
Temperature(°C)	30 ~ 150 ℃	150 ~ 180 ℃	180 ~ 220 ℃	220 ~ 220 ℃	235 ~ 240 ℃	2 ~ 6 °C/ Sec Drop
Belt speed	55 ~ 115 sec	55 ~ 75 sec	30 ~ 50 sec	30 ~ 50 sec	5 ~ 10 sec	60 ~ 90 sec

Reflow Cycle Limit= 1time

* Measured reflow profile

Ordering Information

Part Number	Package Design		
www lt	-R (Reel)		
RTH18008S-30	-B (Bulk)		
	-EVB (Evaluation Board)		

Revision History

Part Number	Release Date	Version	Modification	Data Sheet Status
RTH18008S-30	2018.09.07	2.0	Newly Created	-

RFHIC Corporation reserves the right to make changes to any products herein or to discontinue any product at any time without notice. While product specifications have been thoroughly examined for reliability, RFHIC Corporation strongly recommends buyers to verify that the information they are using is accurate before ordering. RFHIC Corporation does not assume any liability for the suitability of its products for any particular purpose, and disclaims any and all liability, including without limitation consequential or incidental damages.

RFHIC products are not intended for use in life support equipment or application where malfunction of the product can be expected to result in personal injury or death. Buyer uses or sells such products for any such unintended or unauthorized application, buyer shall indemnify, protect and hold RFHIC Corporation and its directors, officers, stockholders, employees, representatives and distributors harmless against any and all claims arising out of such unauthorized use.

Sales, inquiries and support should be directed to the local authorized geographic distributor for RFHIC Corporation. For customers in the US, please contact the US Sales Team at 919-677-8780. For all other inquiries, please contact the International Sales Team at 82-31-8069-3036.