

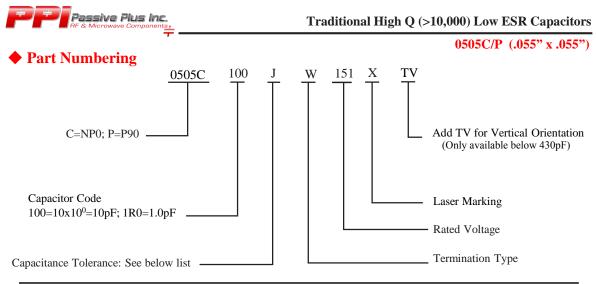
DORE

0505C/P (.055" x .055")

Product Features

High Q, High Power, Low ESR/ESL, Low Noise, High Self-Resonance, Ultra-Stable Performance.

Product Application


Typical Functional Applications: Tuning, Bypass, Coupling, Feedback, D.C. Blocking and Impedance Matching. Typical Circuit Applications: UHF/Microwave RF Power Amplifiers, Mixers, Oscillators, Low Noise Amplifiers, Filter Networks, Timing Circuits and Delay Lines.

◆ 0505C/P Capacitance Table NP0=C; P90=P Max. capacitance: 0505P=100pF; 0505C=1000pF

Cap. pF	Code	Tol.	Rated WVDC	Cap. pF	Code	Tol.	Rated WVDC	Cap. pF	Code	Tol.	Rated WVDC	Cap. pF	Code	Tol.	Rated WVDC
0.1	0R1			2.4	2R4			20	200		150V	160	161*		150V
0.2	0R2			2.7	2R7			22	220		Code	180	181*		Code
0.3	0R3			3.0	3R0			24	240		151	200	201*		151
0.4	0R4			3.3	3R3			27	270		or	220	221*		or
0.5	0R5			3.6	3R6			30	300		250V	240	241*		200V
0.6	0R6		150V	3.9	3R9	A,B,	1501	33	330		Code 251	270	271*		Code
0.7	0R7		Code	4.3	4R3	C,D	150V Code	36	360		or	300	301*		201
0.8	0R8		151	4.7	4R7		151	39	390		300V	330	331*		
0.9	0R9		or	5.1	5R1		or 250V Code 251 or 300V	43	430		Code	360	361*		
1.0	1R0		250V Code	5.6	5R6			47	470	F,G,	301	390	391*		15017
1.1	1R1	A,B,		6.2	6R2			51	510		430 470 510	430	431*	F,G,	150V Code 151
1.2	1R2	C,D	251	6.8	6R8			56	560	J,K		470	471*	J,K	
1.3	1R3		or	7.5	7R5			62	620			510	511*		101
1.4	1R4		300V	8.2	8R2			68	680		150V	560	561*		
1.5	1R5		Code	9.1	9R1		Code	75	750		Code 151	620	621*		
1.6	1R6		301	10	100		301	82	820		or	680	681*		50V
1.7	1R7			11	110			91	910		200V	750	751*		Code
1.8	1R8			12	120	F,G,		100	101		Code	820	821*		500
1.9	1R9			13	130	г,0, J,K		110	111*		201	910	911*		or
2.0	2R0			15	150	, II.		120	121*			1000	102*		100V
2.1	2R1			16	160			130	0 131*						Code
2.2	2R2			18	180			150	151*						101

Remark: special capacitance, tolerance and WVDC are available, consult with PASSIVE PLUS. * - Available in NP0 only.

PPI0505CPDATA072519RevA

Capacitance Tolerance										
Code	A B C D F G J							K		
Tolerance	$\pm 0.05 pF$	$\pm 0.1 \text{pF}$	±0.25pF	$\pm 0.5 \mathrm{pF}$	$\pm 1\%$	$\pm 2\%$	$\pm 5\%$	$\pm 10\%$		

0505C/P Magnetic and Non-Magnetic Dimensions

unit:inch(millimeter)

	m						
Series	Term. Code	Type/Outlines	Type/Outlines Length Lc		Thickness Tc	Overlap B	Plated Material
0505C 0505P	W	TE					100% Sn Solder over Nickel Plating RoHS Compliant
0505C 0505P	L	Chip	.055 +.015 to010 (1.40 +0.38 to -0.25)	.055±.010 (1.40±0.25)	.057 (1.45max)	.020 (0.51max)	90%Sn10%P b Tin/Lead Solder over Nickel Plating
0505C 0505P	P (Non-Mag)	THE INON-Mag)					100%Sn Solder over Copper Plating RoHS Compliant

Note: "Non-Mag" means no magnetic materials.

0505C/P (.055" x .055")

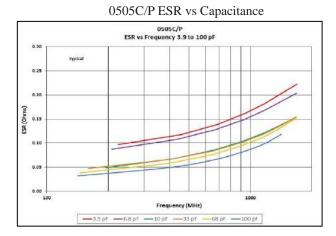
Performance

Item	Specifications
Quality Factor (Q)	greater than 10,000 at 1MHz.
Insulation Resistance (IR)	10^5 Megohms min. @ +25 °C at rated WVDC. 10^4 Megohms min. @ +125 °C at rated WVDC.
Rated Voltage	See Rated Voltage Table.
Dielectric Withstanding Voltage (DWV)	250% of rated Voltage for 5 seconds.
Operating Temperature Range	-55°C to +200°C
Temperature coefficient (TC)	C: -55°C to 125°C 0±30ppm/°C; >125°C to 200°C 0±60ppm/°C P: +90±20ppm/°C
Capacitance Drift	$\pm 0.02\%$ or ± 0.02 pF, whichever is greater.
Piezoelectric Effects	None
Termination Type	See Termination Type Table.

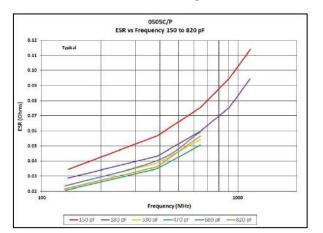
Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

Environmental Tests

Item	Specifications	Method				
Thermal shock	DWV: the initial value IR: Shall not be less than 30% of the initial value Capacitance change:	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature (-55°C and 200°C) stay 30 min,the time of removing shall not be more than 3 minutes. Perform the five cycles.				
Moisture resistance	no more than 0.5% or 0.5 pF, whichever is greater.	MIL-STD-202, Method 106.				
Humidity (steady state)	DWV: the initial value IR: the initial value Capacitance change: no more than 0.3% or 0.3pF, whichever is greater.	MIL-STD-202, Method 103, Condition A, With 1.5 Volts D.C. applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours minimum.				
Life	IR: Shall not be less than 30% of the initial value Capacitance change: no more than 2.0% or 0.5pF, whichever is greater.	MIL-STD-202, Method 108, for 2000 hours, at 200°C. 200% Rated voltage D.C. applies.				
Terminal strength	Force : 10lbs typical, 5 lbs min., Duration time: 5 to 10 seconds.	MIL-STD-202, Method 211A, Test condition A. Applied a force and maintained for a period of 5 to 10 seconds. The force shall be in the direction of the axes of the terminations.				

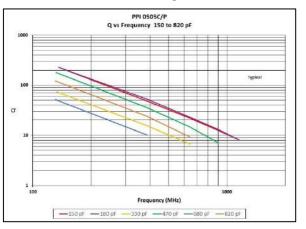


0505C/P Performance Curves


Traditional High Q (>10,000) Low ESR Capacitors

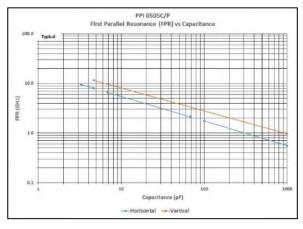
0505C/P Q vs Capacitance

0505C/P (.055" x .055")

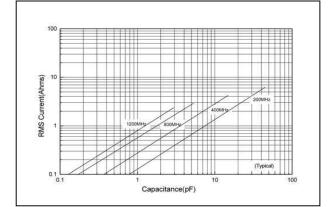


0505C ESR vs Capacitance

0505C Q vs Capacitance


Definitions and Measurement Conditions

For a capacitor in a series configuration, i.e., mounted across a gap in a microstrip trace, with 50-Ohm source and termination resistances, the First Series Resonance, FSR, is defined as the lowest frequency at which the imaginary part of the input impedance, Im[Zin], equals zero when reference planes are at the sample edges. The FSR shall be considered as undefined (gap in plot above) if, over the measured or model-validated frequency range: (a) Im[Zin] never reaches zero; or, (b) at frequencies lower than that at which Im[Zin] = 0, Im[Zin] is not monotonic with frequency and/or the real part of the input impedance, Re[Zin], deviates more than once from monotonicity. The First Series Resonance, FSR, is defined as the lowest frequency at which the imaginary part of the input impedance, Im[Zin], equals zero. Should Im[Zin] or the real part of the input impedance, Re[Zin], not be monotonic with frequency at which trequency at frequencies lower than those at which Im[Zin] = 0, the FSR shall be considered as undefined. FSR is dependent on internal capacitor structure; substrate thickness and dielectric constant; capacitor oriented alongside the FPR plot; and mounting pad dimensions. The measurement conditions are: substrate – Rogers RO4350; substrate dielectric constant = 3.66; horizontal mount substrate thickness (mils) = 25; gap in microstrip trace (mils) = 15; horizontal mount microstrip trace width (mils) = 55. Reference planes at sample edges. All data has been derived from electrical models created by Modelithics, Inc., a specialty vendor contracted by PPI. The models are derived from measurements on a large number of parts disposed on several different substrates.


10

0505C/P (.055" x .055")

0505C/P First Parallel Resonance (FPRs)

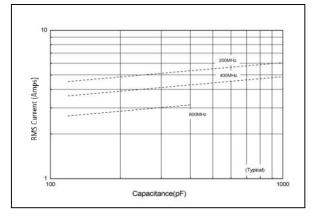
The current depends on voltage limited:

$$I = \frac{\sqrt{2}}{2}I_{peak} = \frac{\sqrt{2}}{2} \times \frac{V_{rated}}{X_c} = \sqrt{2}\pi f^2 C V_{rated}$$

depends on power dissipation limited: $I = \sqrt{\frac{P_{deceptation}}{ESR}}$

The current depends on power dissipation limited:

PPI 0505C/P nce (FSR) vs Capacitance First Series


0505C/P First Series Resonance (FSRs)

0505C Current Rating vs Capacitance

Capacita nce (pF)

---- Horizontal ---- Vertical

100

Note: If the thermal resistance of mounting surface is 40°C/W. then a power dissipation of 1.5 W will result in the current limited we can calculate the current limited:

 $I = \sqrt{\frac{P_{abssipation}}{ESR}}$

(GHz) 1.0

SR

0.1

Definitions and Measurement conditions:

The First Parallel Resonance, FPR, is defined as the lowest frequency at which a suckout or notch appears in [S21]. It is generally independent of substrate thickness or dielectric constant, but does depend on capacitor orientation. A horizontal orientation means the capacitor electrode planes are parallel to the plane of the substrate; a vertical orientation means the electrode planes are perpendicular to the substrate. The measurement conditions are: substrate - Rogers RO4350; substrate dielectric constant = 3.66; horizontal mount substrate thickness (mils) = 25; gap in microstrip trace (mils) = 15; horizontal mount microstrip trace width (mils) = 55. Reference planes at sample edges.

All data has been derived from electrical models created by Modelithics, Inc., a specialty vendor contracted by PPI. The models are derived from measurements on a large number of parts disposed on several different substrates.

0505C/P (.055" x.055")

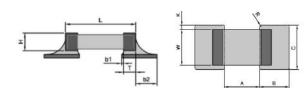
• Design Kits

These capacitors are 100% RoHS. Kits are available in Magnetic and Non-Magnetic that contain 10 (ten) pieces per value; 16 values per kit.

DKD0505C01 DKD0505P01	0.1pF- 2.0pF	0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.5pF 1.6, 1.8, 2.0pF	$\pm 0.1 \text{pF}$
DKD0505C02 DKD0505P02	1.0pF - 10pF	1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7pF 3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2pF	\pm 0.1pF
DKD0505P02		10pF	± 5%
DKD0505C03 DKD0505P03	10pF -100pF	10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39, 47, 56, 68, 82, 100pF	± 5%
DKD0505C04	100pF-1000pF	100, 120, 150, 180, 200, 220, 240, 270, 300, 330pF, 390, 470, 560, 680, 820, 1000pF	± 5%
DKD0505C05 DKD0505P05	0.1pF- 2.0pF Non-Magnetic	0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.5pF 1.6, 1.8, 2.0pF	$\pm 0.1 \mathrm{pF}$
DKD0505C06 DKD0505P06	1.0pF - 10pF Non-Magnetic	1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7pF 3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2pF	\pm 0.1pF
	Non-Magnetic	10pF	± 5%
DKD0505C07 DKD0505P07	10pF - 100pF Non-Magnetic	10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39, 47, 56, 68, 82, 100pF	± 5%
DKD0505C08	100pF- 1000pF Non-Magnetic	100, 120, 150, 180, 200, 220, 240, 270, 300, 330pF, 390, 470, 560, 680, 820, 1000pF	± 5%

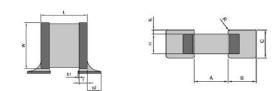
0505C/P (.055" x .055")

♦ Recommended Land Pattern Dimensions


When mounting the capacitor to substrate, it's important to carefully consider that the amount of solder (size of fillet) used has a direct effect upon the capacitor once it's mounted.

1) The greater the amount of solder, the greater the stress to the elements. This may cause the substrate to break or crack.

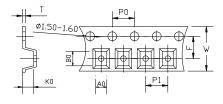
2) In the situation where two or more devices are mounted onto a common land, be sure to separate the device into exclusive pads by using soldering resist.


• Horizontal Mounting

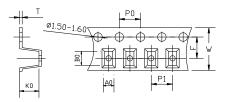
Orientation	EIA	А	В	С
Horizontal	0505	0.5-0.7	0.7-0.9	1.2-1.4

• Vertical Mounting*

Orientation	EIA	A	В	C
Vertical	0505	0.5-0.7	0.7-0.9	1.0-1.2



*Only available below 430pF


• Tape & Reel Specifications

Orientation	EIA	A0	В0	ко	w	P0	P1	Т	F	Qty Min	Qty /reel	Tape material
Horizontal	0505	1.38	1.68	0.98	8.00	4.00	4.00	0.22	3.50	500	3000	Plastic
Vertical	0505	1.10	1.60	1.40	12.00	4.00	4.00	0.30	5.50	300	2000	Plastic

Horizontal Orientation

Vertical Orientation

