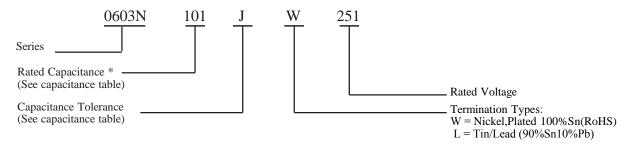


0603N (.060" x .030")

0603N (.060" x .030")

◆ 0603N Capacitance & Rated Voltage Table


Cap. pF	Code	Tol.	Rated WVDC	Cap. pF	Code	Tol.	Rated WVDC	Cap. pF	Code	Tol.	Rated WVDC
0.1	0R1			2.2	2R2			16	160		
0.2	0R2			2.4	2R4			18	180		
0.3	0R3			2.7	2R7		250V	20	200		
0.4	0R4			3.0	3R0			22	220		
0.5	0R5			3.3	3R3	A,B,		24	240		250V Code 251
0.6	0R6			3.6	3R6	C,D		27	270	F,G, J,K	
0.7	0R7			3.9	3R9			30	300		
0.8	0R8			4.3	4R3			33	330		
0.9	0R9		250V Code 251	4.7	4R7			36	360		
1.0	1R0	4.5		5.1	5R1			39	390		
1.1	1R1	A,B, C,D		5.6	5R6		Code 251	43	430		
1.2	1R2	С,Б		6.2	6R2		231	47	470		
1.3	1R3			6.8	6R8			51	510		
1.4	1R4			7.5	7R5	A, B,C		56	560		
1.5	1R5			8.2	8R2			62	620		
1.6	1R6			9.1	9R1			68	680		
1.7	1R7			10	100			75	750		
1.8	1R8			11	110	_{EG}		82	820		
1.9	1R9			12	120	F,G, J,K		91	910		
2.0	2R0			13	130	J,1X		100	101		
2.1	2R1			15	150						

Remark: special capacitance, tolerance and WVDC are available, consult with PASSIVE PLUS.

0603N (.060" x .030")

♦ Part Numbering

^{*} When capacitance is less than 1.0, use "R" for decimal

	Capacitance Tolerance									
Code	A	A B C D F G J K								
Tol.	±0.05pF	±0.1pF	±0.25pF	±0.5pF	±1%	±2%	±5%	±10%		

♦ 0603N Chip Dimensions

unit: inch (millimeter)

	Term.			Plated			
Series	Series Code Type/O	Type/Outlines	Length Lc	Width Wc	Thickness Tc	Overlap B	Material
0603N	W	TC WC	$.062 \pm .006$ (1.57 ± 0.15)	.032±.006 (0.81±0.15)	.030 ±.005 ~003 (0.76 +0.13 ~ -0.08)	.014±.006 (0.35±0.15)	Sn/Ni (RoHS)

Also Available in Tin/Lead Termination (90%Sn10%Pb)

♦ Design Kits

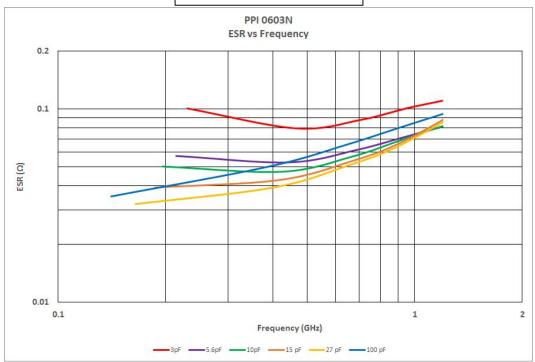
These capacitors are 100% RoHS. Kits are available that contain 10 (ten) pieces per value; number of values per kit varies, depending on case size and capacitance.

Kit	Description	Values	Tolerance
DKD0603N01	0603N .1pF - 2.0pF	0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.5, 1.6, 1.8, 2.0pF	+/1pF
DKD0603N02	0603N 1.0pF - 10pF	1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2pF,	+/.1pF
	000314 1.0рг - 10рг	10pF	+/-5%
DKD0603N03	0603N 10 - 100pF	10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39, 47, 56, 68, 82, 100pF	+/-5%

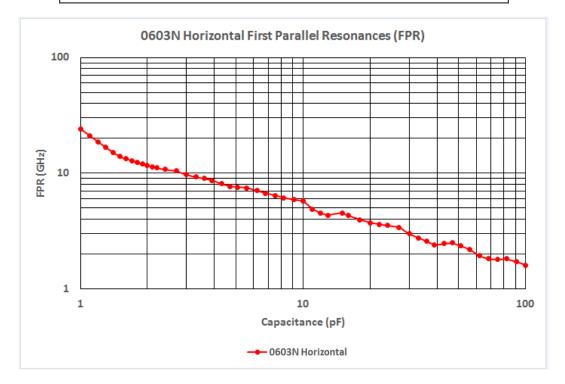
Performance

0603N (.060" x .030")

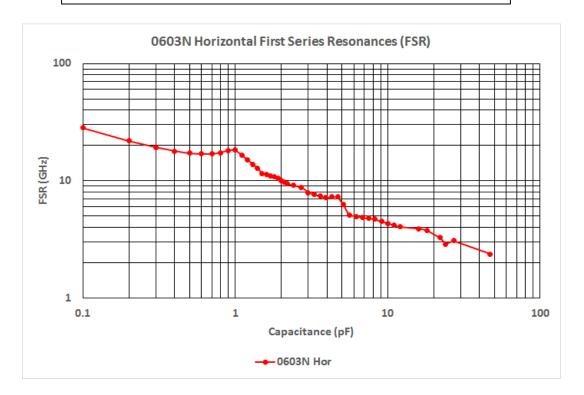
Item	Specifications
Quality Factor (Q)	2,000 min. @ 1 MHz
Insulation Resistance (IR)	10 ⁵ Megohms min. @ +25 °C at rated WVDC. 10 ⁴ Megohms min. @ +125 °C at rated WVDC.
Rated Voltage	250V
Dielectric Withstanding Voltage (DWV)	250% of rated Voltage for 5 seconds.
Operating Temperature Range	-55°C to +175°C
Temperature coefficient (TC)	0±30ppm/°C
Capacitance Drift	±0.02% or ±0.02pF, whichever is greater.
Piezoelectric Effects	None


♦ Environmental Tests

Item	Specifications	Method
Terminal Adhesion	Termination should not pull off. Ceramic should remain undamaged.	Linear pull force exerted on axial leads soldered to each terminal. 2.0lbs.
Resistance To soldering heat	No mechanical damage Capacitance change: -1.0% ~+2.0% Q>500 I.R. >10 G Ohms Breakdown voltage: 2.5 x WVDC	Preheat device to 150°C - 180°C for 60 sec. Dip in $260^{\circ}\text{C} \pm 5^{\circ}\text{C}$ solder for 10 ± 1 sec. Measure after 24 ± 2 hour cooling period.
Thermal Shock	No mechanical damage Capacitance change: ±0.5% or 0.5pF max Q>2000 I.R. >10 G Ohms Breakdown voltage: 2.5 x WVDC	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature (-55 °C and 175 °C) stay 30 minutes. The time of removing shall not be more than 3 minutes. Perform the five cycles.
Humidity, Steady State	No mechanical damage Capacitance change: ±0.5% or 0.5pF max. Q>300 I.R. >1 G Ohms Breakdown voltage: 2.5 x WVDC	MIL-STD-202, Method 106.
Low Voltage Humidity	No mechanical damage Capacitance change: ±0.3% or 0.3pF max. Q>300 I.R. >1 G Ohms Breakdown voltage: 2.5 x WVDC	MIL-STD-202, Method 103, Condition A, with 1.5 Volts D.C. applied while subjected to an environment of 85 °C with 85% relative humidity for 240 hours minimum.
Life	No mechanical damage Capacitance change: ±2.0% or 0.5pF max. Q>500 I.R. >1 G Ohms Breakdown voltage: 2.5 x WVDC	MIL-STD-202, Method 108, for 1000 hours, at 175 °C. 200% Rated voltage D.C. applied.


0603N (.060" x .030")

♦ 0603N Electrical Performance Curves


First Parallel Resonant Frequency vs. Capacitance

The First Parallel Resonance, FPR, is defined as the lowest frequency at which a suckout or notch appears in |S21|. It is generally independent of substrate thickness or dielectric constant, but does depend on capacitor orientation. A horizontal orientation means the capacitor electrode planes are parallel to the plane of the substrate.

First Series Resonant Frequency vs. Capacitance

The First Series Resonance, FSR, is defined as the lowest frequency at which the imaginary part of the input impedance, Im[Zin], equals zero. Should Im[Zin] or the real part of the input impedance, Re[Zin], not be monotonic with frequency at frequencies lower than thoseat which Im[Zin] = 0, the FSR shall be considered as undefined. FSR is dependent on internal capacitor structure; substrate thickness and dielectric constant; capacitor orientation, as defined alongside the FPR plot; and mounting pad dimensions.

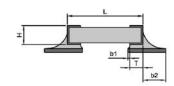
Definitions and Measurement conditions:

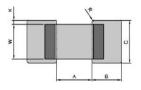
The definitions on the charts are for a capacitor in a series configuration, i.e., mounted across a gap in a microstrip trace with a 50-Ohm termination. The measurement conditions are: substrate - Rogers RT/duroid® 5880; substrate dielectric constant = 2.20; substrate thickness (mils) = 10; gap in microstrip trace (mils) = 23.7; microstrip trace width (mils) = 30.0; **Reference planes at sample edges.**

All data has been derived from electrical models created by Modelithics, Inc., a specialty vendor contracted by PPI. The models are derived from measurements on a large number of parts disposed on several different substrates.

S-Parameters can be found on the PPI Website-- http://www.passiveplus.com

0603N (.060" x. 030")

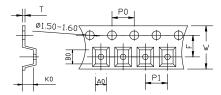

♦ Recommended Land Pattern Dimensions


When mounting the capacitor to substrate, it's important to carefully consider that the amount of solder (size of fillet) used has a direct effect upon the capacitor once it's mounted.

- 1) The greater the amount of solder, the greater the stress to the elements. This may cause the substrate to break or crack.
- 2) In the situation where two or more devices are mounted onto a common land, be sure to separate the device into exclusive pads by using soldering resist.

Horizontal Mounting

Orientation	EIA	A	В	С	
Horizontal	0603	0.70	0.90	0.90	



◆ Tape & Reel Specifications

Orientation	EIA	A0	В0	K0	W	P0	P1	T	F	QTY Min	QTY/ REEL	Tape Material
Horizontal	0603N	0.95	1.80	0.85	8.00	4.00	4.00	0.20	3.50	500	500	Paper

Horizontal Orientation

