

1111C/P (.110" x .110")

### **♦ Product Features**

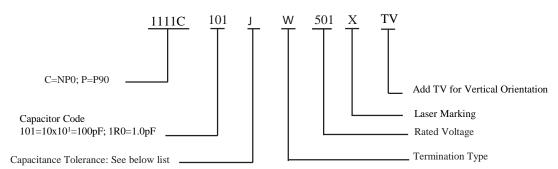
High Q, High Power, Low ESR/ESL, Low Noise, High Self-Resonance, Ultra-Stable Performance.



## **♦** Product Application

Typical Functional Applications: Bypass, Coupling, Tuning, Feedback, Impedance Matching and D.C. Blocking. Typical Circuit Applications: UHF/Microwave RF Power Amplifiers, Mixers, Oscillators, Low Noise Amplifiers, Filter Networks, Timing Circuits and Delay Lines.

## ♦ 1111C/P Capacitance Table NP0=C; P90=P 1111P: 1000pF max., 1111C: 10000pF max.


| Cap. | Code | Tol. | Rated<br>WVDC | Cap.<br>pF | Code       | Tol. | Rated<br>WVDC | Cap.<br>pF | Code | Tol. | Rated<br>WVDC | Cap.<br>pF | Code       | Tol. | Rated<br>WVDC |
|------|------|------|---------------|------------|------------|------|---------------|------------|------|------|---------------|------------|------------|------|---------------|
| 0.1  | OR1  |      | WVDC          | 3.6        | 3R6        |      | WVDC          | 43         | 430  |      | WVDC          | 510        | 511        |      | WVDC          |
|      | OR2  |      |               | 3.9        |            |      |               | 45         | 470  |      | 500V          | 560        |            |      | 100V          |
| 0.2  | OR3  | A,B  |               | 4.3        | 3R9        |      |               | 51         | 510  |      | Code          |            | 561<br>621 |      | Code          |
| 0.3  | OR4  |      |               |            | 4R3<br>4R7 |      |               |            |      |      | 501<br>or     | 620        |            | - C  | 101           |
| _    | -    |      |               | 4.7        |            |      |               | 56         | 560  |      | 1000V         | 680        | 681        | F,G, | or            |
| 0.5  | 0R5  |      |               | 5.1        | 5R1        | A,B, |               | 62         | 620  |      | Code          | 750        | 751        | J,K  | 200V          |
| 0.6  | 0R6  |      | 500V          | 5.6        | 5R6        | C,D  | 500V          | 68         | 680  |      | 102           | 820        | 821        |      | Code          |
| 0.7  | OR7  |      | Code          | 6.2        | 6R2        |      | Code          | 75         | 750  |      | or<br>1500V   | 910        | 911        |      | 201           |
| 0.8  | OR8  |      | 501           | 6.8        | 6R8        |      | 501           | 82         | 820  |      | Code          | 1000       | 102        |      |               |
| 0.9  | OR9  |      | or            | 7.5        | 7R5        |      | or            | 91         | 910  |      | 152           | 1100       | 112*       |      | 200V          |
| 1.0  | 1R0  |      | 1000V         | 8.2        | 8R2        |      | 1000V         | 100        | 101  |      |               | 1200       | 122*       |      | Code          |
| 1.1  | 1R1  |      | Code          | 9.1        | 9R1        |      | Code          | 110        | 111  |      | 300V          | 1500       | 152*       |      | 201           |
| 1.2  | 1R2  |      | 102           | 10         | 100        |      | 102           | 120        | 121  |      | Code          | 1800       | 182*       |      |               |
| 1.3  | 1R3  |      | or            | 11         | 110        |      | or            | 130        | 131  | F,G, | 301           | 2200       | 222*       |      |               |
| 1.4  | 1R4  |      | 1500V         | 12         | 120        |      | 1500V         | 150        | 151  | J,K  | or            | 2700       | 272*       |      |               |
| 1.5  | 1R5  | A,B, | Code          | 13         | 130        |      | Code          | 160        | 161  |      | 1000V         | 3000       | 302*       |      | 100V          |
| 1.6  | 1R6  | C,D  | 152           | 15         | 150        |      | 152           | 180        | 181  |      | Code          | 3300       | 332*       |      | Code          |
| 1.7  | 1R7  |      | 132           | 16         | 160        |      | 132           | 200        | 201  |      | 102           | 3900       | 392*       | F,G, | 101           |
| 1.8  | 1R8  |      |               | 18         | 180        | F,G, |               | 220        | 221  |      |               | 4700       | 472*       | J,K  |               |
| 1.9  | 1R9  |      |               | 20         | 200        | J,K  |               | 240        | 241  |      | 200V          | 5100       | 512*       |      |               |
| 2.0  | 2R0  |      |               | 22         | 220        | J,K  |               | 270        | 271  |      | Code          | 5600       | 562*       |      |               |
| 2.1  | 2R1  |      |               | 24         | 240        |      |               | 300        | 301  |      | 201           | 10000      | 103*       |      |               |
| 2.2  | 2R2  |      |               | 27         | 270        |      |               | 330        | 331  |      | or            |            |            |      | 50V           |
| 2.4  | 2R4  |      |               | 30         | 300        |      |               | 360        | 361  |      | 600V          |            |            |      | Code          |
| 2.7  | 2R7  |      |               | 33         | 330        |      |               | 390        | 391  |      | Code          |            |            |      | 500           |
| 3.0  | 3R0  |      |               | 36         | 360        |      |               | 430        | 431  |      | 601           |            |            |      |               |
| 3.3  | 3R3  |      |               | 39         | 390        |      |               | 470        | 471  |      |               |            |            |      |               |

Remark: special capacitance, tolerance and WVDC are available, consult with PASSIVE PLUS.

\* - Available in NP0 only.



# **♦** Part Numbering



|           |         |        | Capaci  | tance Tolerance |     |     |     |      |
|-----------|---------|--------|---------|-----------------|-----|-----|-----|------|
| Code      | A       | В      | С       | D               | F   | G   | J   | K    |
| Tolerance | ±0.05pF | ±0.1pF | ±0.25pF | ±0.5pF          | ±1% | ±2% | ±5% | ±10% |

# **♦** 1111C/P Lead Type and Dimensions

unit:inch(millimeter)

|                | Т     | T/                                           | C                                 | nensions                         |                      | I             | ead Dime              | District                          |                                       |                                                           |
|----------------|-------|----------------------------------------------|-----------------------------------|----------------------------------|----------------------|---------------|-----------------------|-----------------------------------|---------------------------------------|-----------------------------------------------------------|
| Series         | Term. | Type/<br>Outlines                            | Length                            | Width                            | Thick.               | Overlap       | Length                | Width                             | Thickness                             | Plated<br>Material                                        |
|                | Code  | Outililes                                    | Lc                                | Wc                               | Tc                   | В             | Ll                    | WL                                | TL                                    | Material                                                  |
| 1111C          | W     | T. T. S. | .110<br>+.020 to<br>010           | .110<br>±.010                    | .10                  | .024          |                       |                                   |                                       | 100%Sn Solder<br>over Nickel<br>Plating<br>RoHS Compliant |
| 1111P          | L     | Chip                                         | (2.79<br>+0.51 to<br>-0.25)       | (2.79±<br>0.25)                  | (2.54)<br>max        | (0.60)<br>Max | -                     | -                                 | -                                     | 90%Sn10%Pb<br>Tin/Lead Solder<br>over Nickel<br>Plating   |
| 1111C<br>1111P | MS    | тТ                                           | .135<br>± .015<br>(3.43±<br>0.38) | .110<br>±.010<br>(2.79±<br>0.25) | .10<br>(2.54)<br>max | -             | .250<br>(6.35)<br>min | .093<br>± .005<br>(2.36<br>±0.13) | $.004 \pm .001$<br>(0.1 $\pm 0.025$ ) | 100%Silver                                                |

|                | T     | TF. /                | C                                                     | Capacitor Dimensions             |                      |                       |                       |                                   | Lead Dimensions                    |                                                                 |  |  |
|----------------|-------|----------------------|-------------------------------------------------------|----------------------------------|----------------------|-----------------------|-----------------------|-----------------------------------|------------------------------------|-----------------------------------------------------------------|--|--|
| Series         | Term. | Type/<br>Outlines    | Length                                                | Width                            | Thick.               | Overlap               | Length                | Width                             | Thickness                          | Plated<br>Material                                              |  |  |
|                | Code  | Outimes              | Lc                                                    | Wc                               | Tc                   | В                     | Ll                    | WL                                | TL                                 | Materiai                                                        |  |  |
| 1111C<br>1111P | P     | Chip (Non-Mag)       | .110<br>+.020 to<br>010<br>(2.79<br>+0.51to<br>-0.25) | .110<br>±.010<br>(2.79±<br>0.25) | .10<br>(2.54)<br>max | .024<br>(0.60)<br>Max | 1                     | -                                 | 1                                  | 100%Sn<br>Solder over<br>Copper<br>Plating<br>RoHS<br>Compliant |  |  |
| 1111C<br>1111P | MN    | Microstrip (Non-Mag) | .135<br>± .015<br>(3.43±<br>0.38)                     | .110<br>±.010<br>(2.79±<br>0.25) | .10<br>(2.54)<br>max | -                     | .250<br>(6.35)<br>min | .093<br>± .005<br>(2.36±<br>0.13) | $.004 \pm .001$<br>(0.1 \pm 0.025) | 100%Silver                                                      |  |  |

Note: "Non-Mag" means no magnetic materials. All leads are attached with high temperature solder and parts are RoHS Compliant.



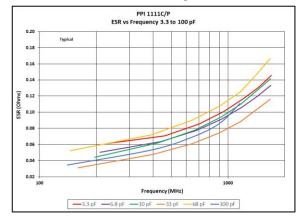
## **Performance**

1111C/P (.110" x .110")

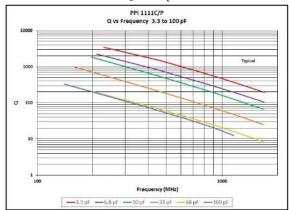
| Item                                  | Specifications                                                                                                                                                                                                                                                   |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quality Factor (Q)                    | greater than 10,000 at 1MHz.                                                                                                                                                                                                                                     |
| Insulation Resistance (IR)            | 0.1 pF to 470 pF:  10 <sup>6</sup> Megohms min. @ +25 °C at rated WVDC.  10 <sup>5</sup> Megohms min. @ +125 °C at rated WVDC.  510 pF to 10000 pF:  10 <sup>5</sup> Megohms min. @ +25 °C at rated WVDC.  10 <sup>4</sup> Megohms min. @ +125 °C at rated WVDC. |
| Rated Voltage                         | See Rated Voltage Table.                                                                                                                                                                                                                                         |
| Dielectric Withstanding Voltage (DWV) | 250% of Voltage for 5 seconds, Rated Voltage≦500VDC<br>150% of Voltage for 5 seconds, 500VDC< Rated Voltage ≦1250VDC<br>120% of Voltage for 5 seconds, Rated Voltage>1250VDC                                                                                     |
| Operating Temperature Range           | -55 °C to +200 °C                                                                                                                                                                                                                                                |
| Temperature coefficient (TC)          | C: -55°C to 125°C 0±30ppm/°C;<br>>125°C to 200°C 0±60ppm/°C<br>P: +90±20ppm/°C                                                                                                                                                                                   |
| Capacitance Drift                     | ±0.02% or ±0.02pF, whichever is greater.                                                                                                                                                                                                                         |
| Piezoelectric Effects                 | None                                                                                                                                                                                                                                                             |
| Termination Type                      | See Termination Type Table.                                                                                                                                                                                                                                      |

 $Capacitors \ are \ designed \ and \ manufactured \ to \ meet \ the \ requirements \ of \ MIL-PRF-55681 \ and \ MIL-PRF-123.$ 

## **•** Environmental Tests


| Item                      | Specifications                                                                                                            | Method                                                                                                                                                                                                                     |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Thermal shock             | DWV: the initial value IR: Shall not be less than 30% of the initial value Capacitance change:                            | MIL-STD-202, Method 107, Condition A. At the maximum rated temperature (-55°C and 200°C) stay 30 min,the time of removing shall not be more than 3 minutes. Perform the five cycles.                                       |
| Moisture resistance       | no more than 0.5% or 0.5pF, whichever is greater.                                                                         | MIL-STD-202, Method 106.                                                                                                                                                                                                   |
| Humidity ( steady state ) | DWV: the initial value IR: the initial value Capacitance change: no more than 0.3% or 0.3pF, whichever is greater.        | MIL-STD-202, Method 103, Condition A, With 1.5 Volts D.C. applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours minimum.                                                              |
| Life                      | IR: Shall not be less than 30% of the initial value Capacitance change: no more than 2.0% or 0.5pF, whichever is greater. | MIL-STD-202, Method 108, for2000hours, at 200°C. 200% of Voltage for Capacitors, RatedVoltage≦500VDC; 120% of Voltage for Capacitors, 500VDC< Rated Voltage ≦1250VDC; 100% of Voltage forCapacitors, RatedVoltage>1250VDC. |
| Terminal strength         | Force: 10lbs typical, 5 lbs min.,<br>Duration time: 5 to 10 seconds.                                                      | MIL-STD-202, Method 211A, Test condition A. Applied a force and maintained for a period of 5 to 10 seconds. The force shall be in the direction of the axes of the terminations.                                           |

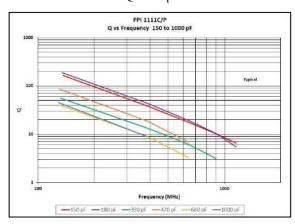



### **♦** 1111C/P Performance Curves

1111C/P (.110" x .110")

### 1111C/P ESR vs Capacitance




1111C/P Q vs Capacitance



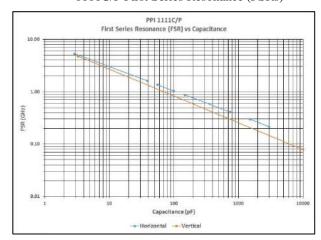
1111C ESR vs Capacitance



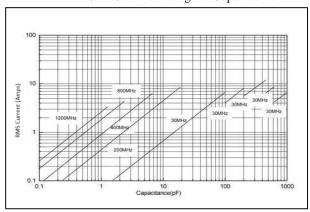
1111C Q vs Capacitance



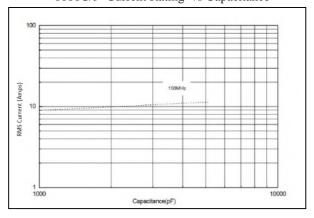
### **Definitions and Measurement Conditions**


For a capacitor in a series configuration, i.e., mounted across a gap in a microstrip trace, with 50-Ohm source and termination resistances, the First Series Resonance, FSR, is defined as the lowest frequency at which the imaginary part of the input impedance, Im[Zin], equals zero. Should Im[Zin] or the real part of the input impedance, Re[Zin], not be monotonic with frequency at frequencies lower than those at which Im[Zin] = 0, the FSR shall be considered as undefined (gap in plot above). The First Series Resonance, FSR, is defined as the lowest frequency at which the imaginary part of the input impedance, Im[Zin], equals zero. Should Im[Zin] or the real part of the input impedance, Re[Zin], not be monotonic with frequency at frequencies lower than those at which Im[Zin] = 0, the FSR shall be considered as undefined. FSR is dependent on internal capacitor structure; substrate thickness and dielectric constant; capacitor orientation, as defined alongside the FPR plot; and mounting pad dimensions. The measurement conditions are: substrate – Rogers RO4350; substrate dielectric constant = 3.66; horizontal mount substrate thickness (mils) = 50; gap in microstrip trace (mils) = 72; horizontal mount microstrip trace width (mils) = 110. Reference planes at sample edges. All data has been derived from electrical models created by Modellithics, Inc., a specialty vendor contracted by PPI. The models are derived from measurements on a large number of parts disposed on several different substrates.




### 1111C/P First Parallel Resonance (FPRs)

# PPI 1111C/P First Parallel Resonance (FPR) vs Capacitance 100.0 10.0 (\*140) (\*4) (\*4)


### 1111C/P First Series Resonance (FSRs)



1111C/P Current Rating vs Capacitance



1111C/P Current Rating vs Capacitance



The current depends on voltage limited:

$$I = \frac{\sqrt{2}}{2}\,I_{peak} = \frac{\sqrt{2}}{2} \times \frac{V_{raded}}{X_C} = \sqrt{2}\pi I^*CV_{rated}$$
 The current depends on power dissipation limited: 
$$I = \sqrt{\frac{P_{disripation}}{ESR}}$$

Note: If the thermal resistance of mounting surface is 20 °C/W, then a power dissipation of 3 W will result in the current limited we can calculate the current limited:  $I = \sqrt{\frac{P_{daugusins}}{ESR}}$ 

#### **Definitions and Measurement conditions:**

The First Parallel Resonance, FPR, is defined as the lowest frequency at which a suckout or notch appears in |S21|. It is generally independent of substrate thickness or dielectric constant, but does depend on capacitor orientation. A horizontal orientation means the capacitor electrode planes are parallel to the plane of the substrate; a vertical orientation means the electrode planes are perpendicular to the substrate. The measurement conditions are: substrate – Rogers RO4350; substrate dielectric constant = 3.66; horizontal mount substrate thickness (mils) = 50; gap in microstrip trace (mils) = 72; horizontal mount microstrip trace width (mils) = 110. Reference planes at sample edges. All data has been derived from electrical models created by Modelithics, Inc., a specialty vendor contracted by PPI. The models are derived from measurements on a large number of parts disposed on several different substrates.



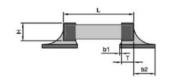
# **Design Kits**

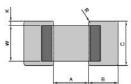
These capacitors are 100% RoHS. Kits are available in Magnetic and Non-Magnetic that contain 10 (ten) pieces per value.

| Design Kit               | Description                     | Values (pF)                                                                                 | No. of values | Toler-<br>ances |
|--------------------------|---------------------------------|---------------------------------------------------------------------------------------------|---------------|-----------------|
| DKD1111C01<br>DKD1111P01 | 1.0pF - 10pF                    | 1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7,<br>3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2pF              |               | ± 0.1pF         |
| DIXDIIII                 |                                 | 10pF                                                                                        |               | ± 5%            |
| DKD1111C02<br>DKD1111P02 | 10pF -100pF                     | 100 120 150 180 200 220 240 270 300 330 390                                                 |               |                 |
| DKD1111C03<br>DKD1111P03 | 100рF-1000рF                    |                                                                                             | 16            | ± 5%            |
| DKD1111C04<br>DKD1111P04 | 1000pF-10000pF                  | 000pF 1000, 1100, 1200, 1500, 1800, 2200, 2700, 3000, 3300, 3900, 4700, 5100, 5600, 10000pF |               | ± 5%            |
| DKD1111C05<br>DKD1111P05 | 1.0pF - 10pF<br>Non-Magnetic    | 1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2pF                 | 16            | ± 0.1pF         |
|                          | Tion Magnette                   | 10pF                                                                                        |               | ± 5%            |
| DKD1111C06<br>DKD1111P06 | 10pF - 100pF<br>Non-Magnetic    | 10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39, 47, 56, 68, 82, 100pF                           | 16            | ± 5%            |
| DKD1111C07<br>DKD1111P07 | 100pF- 1000pF<br>Non-Magnetic   | 00pF 100, 120, 150, 180, 200, 220, 240, 270, 300, 330, 390,                                 |               | ± 5%            |
| DKD1111C08<br>DKD1111P08 | 1000pF- 10000pF<br>Non-Magnetic | 1000, 1100, 1200, 1500, 1800, 2200, 2700, 3000, 3300, 3900, 4700, 5100, 5600,10000pF        | 14            | ± 5%            |





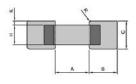

## **♦** Recommended Land Pattern Dimensions


When mounting the capacitor to substrate, it's important to carefully consider that the amount of solder (size of fillet) used has a direct effect upon the capacitor once it's mounted.

- 1) The greater the amount of solder, the greater the stress to the elements. This may cause the substrate to break or crack.
- 2) In the situation where two or more devices are mounted onto a common land, be sure to separate the device into exclusive pads by using soldering resist.

# Horizontal Mounting

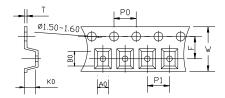
| Orientation | EIA  | A   | В   | С   |
|-------------|------|-----|-----|-----|
| Horizontal  | 1111 | 1.9 | 1.7 | 2.9 |



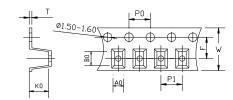



# Vertical Mounting

| Orientation | EIA  | A   | В   | С   |
|-------------|------|-----|-----|-----|
| Vertical    | 1111 | 1.9 | 1.7 | 2.5 |







# **♦** Tape & Reel Specifications

| Orientation | EIA  | A0   | В0   | K0   | w     | P0   | P1   | Т    | F    | Qty<br>Min | Qty<br>/reel | Tape<br>material |
|-------------|------|------|------|------|-------|------|------|------|------|------------|--------------|------------------|
| Horizontal  | 1111 | 2.85 | 3.90 | 1.95 | 8.00  | 4.00 | 4.00 | 0.22 | 3.50 | 500        | 2000         | Plastic          |
| Vertical    | 1111 | 2.00 | 3.50 | 2.70 | 12.00 | 4.00 | 4.00 | 0.40 | 5.50 | 500        | 1500         | Plastic          |
| Vertical    | 1111 | 2.96 | 3.60 | 2.40 | 8.00  | 4.00 | 4.00 | 0.22 | 3.50 | 500        | 1500         | Plastic          |

### **Horizontal Orientation**



### **Vertical Orientation**

