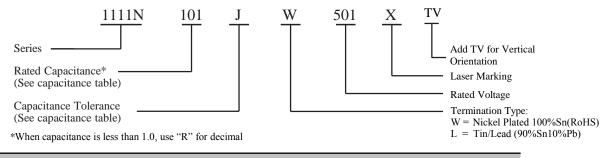


EIA Low ESR Microwave Capacitors

1111N (.110" x .110")

◆ 1111N Capacitance & Rated Voltage Table

Cap. pF	Code	Tol.	WVDC V	Cap. pF	Code	Tol.	WVDC V	Cap. pF	Code	Tol.	WVDC V	Cap. pF	Code	Tol.	WVDC V		
0.2	0R2			3.0	3R0			27	270			220	221				
0.3	0R3			3.3	3R3	А,		30	300			240	241	F,	200V Code		
0.4	0R4			3.6	3R6	В, С,		33	330			270	271				
0.5	0R5			3.9	3R9	C, D		36	360			300	301	G, J,			
0.6	0R6			4.3	4R3			39	390		500V Code	330	331	K	201 500V		
0.7	0R7			4.7	4R7			43	430		501	360	361		Code		
0.8	0R8			5.1	5R1			47	470		Or 1000V	390	391		501		
0.9	0R9			5.6	5R6			51	510		Code	430	431				
1.0	1R0			6.2	6R2		500V	56	560		102	470	471				
1.1	1R1		500V Code	6.8	6R8	В, С,	Code 501	62	620	F,		510	511		100V Code		
1.2	1R2	А,	501 Or	7.5	7R5	р		Or 1000V	68	680	G,		560	561		101 500V	
1.3	1R3	B, C,D	1000V	8.2	8R2				Code	75	750	J, K		620	621		Code 501
1.4	1R4	- /	Code 102	9.1	9R1			102	82	820)		680	681	G,	50V	
1.5	1R5			10	100				91	910			750	751			
1.6	1R6			11	110			100	101			820	821	J, K	Code		
1.7	1R7			12	120			110	111			910	911	к	500		
1.8	1R8			13	130	Б		120	121		300V Code	1000	102				
1.9	1R9			15	150	F, G,		130	131		301			1			
2.0	2R0			16	160	160 J, K		150	151		600V Code						
2.1	2R1			18	180			160	161		601						
2.2	2R2			20	200			180	181								
2.4	2R4			22	220			200	201								
2.7	2R7			24	240												


Remark: special capacitance, tolerance and WVDC are available, consult with PASSIVE PLUS.

EIA Low ESR Microwave Capacitors

11111N (.110" x .110")

Part Numbering

Capacitance Tolerance											
Code	А	В	С	D	F	G	J	K			
Tol.	$\pm 0.05 pF$	$\pm 0.1 \text{pF}$	$\pm 0.25 pF$	$\pm 0.5 pF$	$\pm 1\%$	$\pm 2\%$	$\pm 5\%$	±10%			

1111N Chip Dimensions

unit:inch(millimeter)

Series	Term.			Plated			
	Code	Type/Outlines	Length Lc	Width Wc	Thickness Tc	Overlap B	Material
1111N	W	R I	.110 ±.020~010 (2.79 +0.51~-0.25)	(2.79 ± 0.38)	.10 (2.6) Max	0.015 0.024 Max.	Sn/Ni (RoHS)

Also Available in Tin/Lead Termination (90%Sn10%Pb)

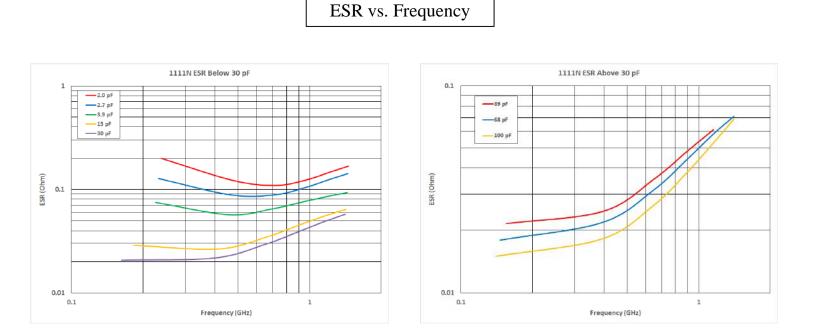
• Design Kits

These capacitors are 100% RoHS. Kits are available that contain 10 (ten) pieces per value; number of values per kit varies, depending on case size and capacitance.

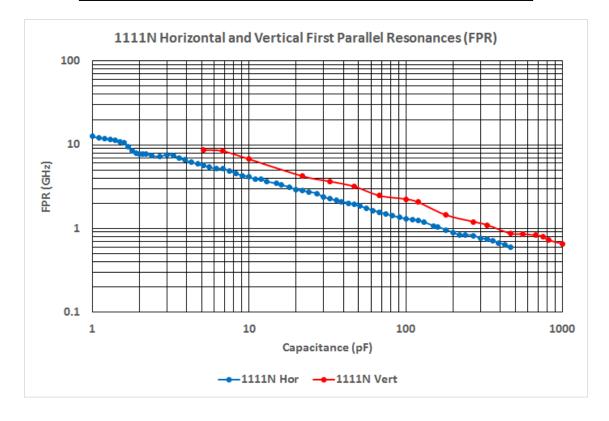
Kit	Description	Values	Tolerances
DKD1111N01	1111N 1 0nE 10nE	1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2pF	±.1pF
	TITIN LOPF - TOPF	10pF	±5%
DKD1111N02	1111N 10pF - 100pF	10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39, 47, 56, 68, 82, 100pF	±5%
DKD1111N03	1111N 100pF - 1000pF	100, 120, 150, 180, 200, 220, 240, 270, 300, 330, 390, 470, 560, 680, 820, 1000pF	±5%

Performance

Item	Specifications
Quality Factor (Q)	2,000 min. @ 1 MHz
Insulation Resistance (IR)	 10⁵ Megohms min. @ +25 °C at rated WVDC. 10⁴ Megohms min. @ +125 °C at rated WVDC.
Rated Voltage	See Capacitance Table
Dielectric Withstanding Voltage (DWV)	250% of Voltage for 5 seconds, Rated Voltage≤500VDC 150% of Voltage for 5 seconds, 500VDC <ratedvoltage≤1250vdc 120% of Voltage for 5 seconds, Rated Voltage>1250VDC</ratedvoltage≤1250vdc
Operating Temperature Range	-55°C to +175°C
Temperature coefficient (TC)	0±30ppm/°C
Capacitance Drift	$\pm 0.02\%$ or ± 0.02 pF, whichever is greater.
Piezoelectric Effects	None

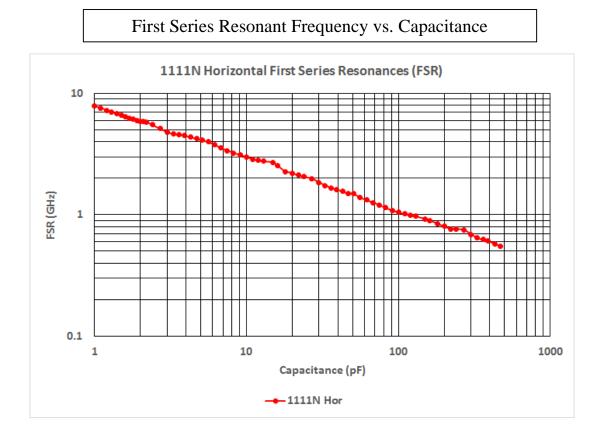

Environmental Tests

Item	Specifications	Method
Terminal Adhesion	Termination should not pull off. Ceramic should remain undamaged.	Linear pull force exerted on axial leads soldered to each terminal. 2.0lbs.
Resistance To soldering heat	No mechanical damage Capacitance change: -1.0% ~+2.0% Q>500 I.R. >10 G Ohms Breakdown voltage: 2.5 x WVDC	Preheat device to 150° C - 180° C for 60 sec. Dip in 260° C $\pm 5^{\circ}$ C solder for 10 ± 1 sec. Measure after 24 ± 2 hour cooling period.
Thermal Shock	No mechanical damage Capacitance change: ±0.5% or 0.5pF max Q>500 I.R. >10 G Ohms Breakdown voltage: 2.5 x WVDC	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature (-55°C and 175°C) stay 30 minutes. The time of removing shall not be more than 3 minutes. Perform the five cycles.
Humidity, Steady State	No mechanical damage Capacitance change: ±0.5% or 0.5pF max. Q>300 I.R. >1 G Ohms Breakdown voltage: 2.5 x WVDC	MIL-STD-202, Method 106.
Low Voltage Humidity	No mechanical damage Capacitance change: ±0.3% or 0.3pF max. Q>300 I.R. >1 G Ohms Breakdown voltage: 2.5 x WVDC	MIL-STD-202, Method 103, Condition A, with 1.5 Volts D.C. applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours minimum.
Life	No mechanical damage Capacitance change: ±2.0% or 0.5pF max. Q>500 I.R. >1 G Ohms Breakdown voltage: 2.5 x WVDC	MIL-STD-202, Method 108, for 1000 hours, at 175°C. 200% of Voltage for Capacitors, Rated Voltage ≤500VDC 120% of Voltage for Capacitors, 500VDC < Rated Voltage ≤1250VDC 100% of Voltage for Capacitors, Rated Voltage > 1250VDC



♦ 1111N Electrical Performance Curves

11111N (.110" x .110")


First Parallel Resonant Frequency vs. Capacitance

The First Parallel Resonance, FPR, is defined as the lowest frequency at which a suckout or notch appears in |S21|. It is generally independent of substrate thickness or dielectric constant, but does depend on capacitor orientation. A horizontal orientation means the capacitor electrode planes are parallel to the plane of the substrate; a vertical orientation means the electrode planes are perpendicular to the substrate.

PPI1111NDATA091819RevA

The First Series Resonance, FSR, is defined as the lowest frequency at which the imaginary part of the input impedance, Im[Zin], equals zero. Should Im[Zin] or the real part of the input impedance, Re[Zin], not be monotonic with frequency at frequencies lower than those at which Im[Zin] =0, the FSR shall be considered as undefined. FSR is dependent on internal capacitor structure; substrate thickness and dielectric constant; capacitor orientation, as defined alongside the FPR plot; and mounting pad dimensions.

Definitions and Measurement conditions:

The definitions on the charts are for a capacitor in a series configuration, i.e., mounted across a gap in a microstrip trace with a 50-Ohm termination. The measurement conditions are: substrate -- Rogers RO4350; substrate dielectric constant = 3.48; horizontal mount substrate thickness (mils) = 55; vertical mount substrate thickness (mils) = 45; gap in microstrip trace, horizontal or vertical mount (mils) = 61.1; horizontal mount microstrip trace width (mils) = 123.7; vertical mount microstrip trace width (mils) = 101.0. **Reference planes at sample edges.**

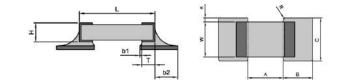
All data has been derived from electrical models created by Modelithics, Inc., a specialty vendor contracted by PPI. The models are derived from measurements on a large number of parts disposed on several different substrates.

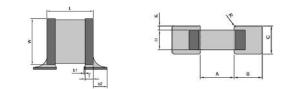
S-Parameters can be found on the PPI Website -- http://www.passiveplus.com/

♦ Recommended Land Pattern Dimensions

When mounting the capacitor to substrate, it's important to carefully consider that the amount of solder (size of fillet) used has a direct effect upon the capacitor once it's mounted.

1) The greater the amount of solder, the greater the stress to the elements. This may cause the substrate to break or crack.

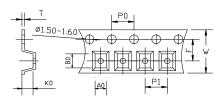

2) In the situation where two or more devices are mounted onto a common land, be sure to separate the device into exclusive pads by using soldering resist.

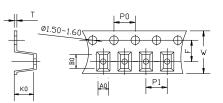

• Horizontal Mounting

Orientation	EIA	А	В	C	
Horizontal	1111	1.90	1.70	2.90	

• Vertical Mounting

Orientation	EIA	А	В	С		
Vertical	1111	1.90	1.70	2.50		




Tape & Reel Specifications

Orientation	EIA	A0	B0	K0	W	P0	P1	Т	F	QTY Min	-	Tape Material
Horizontal	1111N	2.92	3.51	2.34	8.00	4.00	4.00	0.254	3.50	500	500	Embossed
Vertical	1111N	2.92	3.51	2.34	12.00	4.00	4.00	0.254	3.50	500	500	Embossed

Horizontal Orientation

Vertical Orientation

